Course Description

Third course in digital electronics continues prior coverage of digital-to-analog converters (DACs) and analog-to-digital converters (ADCs) with additional conversion topologies, a more detailed analysis of the Nyquist sampling theorem, additional coverage of programmable logic devices (PLDs), and the implementation of sequential state machines. Includes a 3-hour per week laboratory. Prerequisite: EET 122

Addendum to Course Description

In the laboratory, the student will construct several circuits including a discrete circuit that performs digital-to-analog conversion and a circuit that performs analog-to-digital-conversion. The student will use standard laboratory instrumentation to verify the operation of each circuit. The student will also use PC-based electronic circuit simulation software to simulate the operation of several circuits. The Nyquist sampling theorem will be studied in both the time and frequency domains. The use of a programmable logic device (PLD) and a PLD programming language will be explored for the implementation of state machines.